
Stream Processor Testbench
http://www.yanthia.com/online/projlets/StreamProc/index.html

 Dan Downs OstensiblyMyID@gmail.com Scottsdale, AZ, November 2016

Task
Scheduling

UnitCPU
subsys

input
data

capture

buffer DMA
engine

SP unit (Stream Processor)

oneproc unit (2)

oneproc unit (N)

oneproc unit (1)

...

Dedicated
stream

processor
memory

MIDI out

audio
in

Side note:

As for what this system
is intended to do, please
see the Voice to MIDI
project. But in brief, it
will make guesses about
the nature of the
incoming signals using
both graceful heuristics
and barbaric brute-force
computing.
“Brute-force” means

that the value of N, the
number of oneproc units
available, will only be
limited to how many I
can fit into an FPGA.

The transactions: The CPU will feed the SP unit continuously, make high-level
decisions on what to do next based on results from the SP unit, issue new commands,
and continue on in this way until a decision threshold is reached. Each oneproc unit
can take several different commands with a variety of data formats. Each oneproc has
independent read and write channels, and reads can complete out-of-order w.r.t the
writes. Command and data values only make sense in a limited range. All this means
that the scope for transaction randomization is quite limited.
But the transaction class must support randomization of the communication protocol
and a set of out-of-range data values such that the following design principle can
be tested: The CPU might write garbage in, but the oneproc unit must always provide
something out, even garbage: The oneproc unit must never hang.

The sequences: Besides the scoreboard, the sequences are the most awkward part of testing the oneproc
unit because the testbench must behave in a manner similar to the task scheduler, and that brings the
following complications:

1) It severely limits the freedom to randomize transaction data since the command and data fields have
to make sense together. This is mentioned in “The transactions” above.

2) Some write actions write a 64-byte block, some only a single 32-bit word.

3) The read channel activity requires a pair of transactions per action, as does the write channel.

4) Each computation started via the write channel needs some sort of response from the read channel.

5) The read channel doesn't know what else to read until after it has read the status word.

To provide the low-level sequence control and coordination along with high-level “what is the test
about” requirements, a three-level sequence mechanism was used as is shown below on the left.

D U T
oneproc unit

write
channel
virtual
interface

read
channel
virtual
interface

write_agent

sequencer
driver monitor

config
read_agent

sequencer
driver monitor

config

scoreboard

write_queuewrite_tlm_fifo read_tlm_fifo

reference
algorithms

via DPI
transaction
compare

env

4 top-level virtual sequences

5 mid-level construction sequences

10 botom-level atomic sequences

test

start one or more virtual sequences

tb_top

The current oneproc functions are
somewhat placeholders, although they
do represent the sort of computations
the final system will perform. The
functions are:
CORR: Scan all l, L-length sub-
strings in an array of length S, and
return the maximum Pearson's r
correlation coefficient found, and
where in S l is located.
SMOOTH: foreach element in the array
 E, En = (En + En+1)/2

NOP: No nothing, but do it with a
programmable delay (for speeding up
randomized testing of the protocol).

This page describes a testbench for the oneproc unit in the block diagram below. The diagram depicts a
system currently under design. At least two other testbenches will follow: one for the SP unit, which
will reuse much of the oneproc testbench, and a second testbench for the Task Scheduling Unit.

